Puzzles in the

 Charmonium Sector

 Charmonium Sector
 of QCD

Eric Braaten
Ohio State University

support
DOE Division of High Energy Physics

Tuesday, June 1, 2010

Puzzles in the Charmonium Sector of QCD

New cc̄ mesons above DD threshold

What are they?
charmonium?
charmonium hybrids?
tetraquarks?
molecules?

X(3872)

Reviews

The Exotic $X Y Z$ Charmonium-like Mesons Godfrey and Olsen arXiv:0801.3867

Quarkonium: puzzles and opportunities at present and future facilities
Quarkonium Working Group (in preparation)

charmonium below the $D \bar{D}$ threshold before the B factories

charmonium below the $D \bar{D}$ threshold after the B factories

$$
\begin{aligned}
& 3729 \mathrm{MeV} \\
& \eta_{c}(2 S) \xrightarrow{3638} \Psi(2 S) \\
& h_{c} \xlongequal{3526} \begin{array}{ll}
3556 & X_{c 2} \\
3511
\end{array} X_{c 1} \\
& \eta_{c} \xlongequal{2980} \quad 3097 / 4 \\
& 0^{-+} 1^{--} \quad 1^{+-} 0,1,2^{++} \\
& { }^{1} \mathrm{~S}_{0}{ }^{3} \mathrm{~S}_{1} \quad{ }^{1} \mathrm{P}_{\mathrm{I}}:{ }^{3} \mathrm{P}_{0,1,2}
\end{aligned}
$$

- 2 new states: $\eta_{c}(2 S), h_{c}(I P)$

charmonium below the $D \bar{D}$ threshold after the B factories

$$
\begin{aligned}
& \text { IS } n_{c} \xrightarrow{2980} \xrightarrow{3097} J / \psi \\
& 0^{-+} \quad I^{--} \quad 1^{+-} 0,1,2^{++} \\
& { }^{1} S_{0}{ }^{3} \mathrm{~S}_{\mathrm{I}} \quad{ }^{1} \mathrm{P}_{\mathrm{I}} \quad{ }^{3} \mathrm{P}_{0,1,2}
\end{aligned}
$$

- 3 complete multiplets: IS, IP, 2S

$c \bar{c}$ mesons above the $D \bar{D}$ threshold before the B factories

- four l^{--}states
new $c \bar{c}$ mesons above the $D \bar{D}$ threshold after the B factories

$$
\frac{Y(4660)}{Y(4630)}
$$

- up to six new I^{--}states
- up to seven additional states
new $c \bar{c}$ mesons with electric charge?

$$
\begin{aligned}
& Z_{(4430)^{+}} \rightarrow \Psi(2 S) \pi^{+} \\
& Z_{1}(4050)^{+} \rightarrow X_{c l} \pi^{+} \\
& Z_{2}(4250)^{+} \rightarrow X_{c l} \pi^{+}
\end{aligned}
$$

- must have constituents $c \bar{c} u \bar{d}$
- Z(4430) ${ }^{+}$not confirmed by Babar
(but not excluded)
- $\Psi(2 S) \pi^{+}$can be observed at a hadron collider Tevatron, LHC

Wait and see!

I3 new neutral c̄ mesons

- Discoveries

20032004200520062007200820092010 I I I 0
most recent: $Y(4 \mid 40) \rightarrow J / \Psi \varphi$
CDF

- Some have been confirmed

X(3872)
X(3915)
Y(3940)
Y(4260)
$Y(4360)$

Belle, CDF, D0, Babar
Belle, Babar
Babar, Belle
Babar, CLEO, Belle
Babar, Belle

I3 new neutral cc mesons

- $X(3872)$ has been observed in 6 decay modes

$$
\begin{aligned}
& J / \Psi \pi^{+} \pi^{-}, J / \Psi \pi^{+} \Pi^{-} \pi^{0}, J / \Psi \gamma, \Psi(2 S) \gamma \\
& D^{0} \bar{D}^{0} \Pi^{0}, D^{\sigma} D^{0} \gamma
\end{aligned}
$$

- Most have been observed in only one decay mode
$X(3915) \rightarrow J / \psi \omega$

$$
\begin{aligned}
& X(3940), X(4 / 60) \rightarrow D * \bar{D} \\
& Y(3940) \rightarrow D \bar{D} \\
& Y(4008) \rightarrow J / \Psi \pi^{+} \pi^{-} \\
& Y(4 I 40), X(4350) \rightarrow J / \Psi \varphi \\
& Y(4008), Y(4660) \rightarrow \Psi(2 S) \pi^{+} \pi^{-} \\
& Y(4630) \rightarrow \Lambda_{c}^{+} \bigwedge_{c}^{-}
\end{aligned}
$$

What are the new $c \bar{c}$ mesons above the $D \bar{D}$ threshold?

Ordinary mesons? charmonium: č

Exotic mesons?
exotic quantum numbers?

$$
0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \ldots
$$

exotic constituents? charmonium hybrid: c̄̄g tetraquark: cc̄qq
exotic structure: $X(3872)$!

Charmonium

Potential models

Barnes, Godfrey, \& Swanson
Eichten, Lane, \& Quigg
Eichten, Godfrey, Mahlke, \& Rosner
well-developed phenomenology
(except for effects of couplings to charm meson pairs)
predictions of masses, widths
radiative transitions
hadronic transitions
Incomplete multiplets: 4S $\sim 4400 \mathrm{MeV}$
2D ~ 4200
3S ~ 4000
2P~3900
ID ~3800

Charmonium (cont.)

missing charmonium states

Charmonium (cont.)

- one new state identified: $Z(3930) \equiv X_{c 2}(2 P)$ or is it $X_{c 2}(I F)$?
- six new l-- states: no plausible candidates
- I^{++}state $X(3872): X_{c I}(2 P)$ is plausible candidate, but decay mode $J / \psi \pi^{+} \pi^{-} \approx J / \Psi \rho^{0}$ has isospin I
- states with unknown JPC:
plausible candidates, but decay patterns do not match

Charmonium hybrids

Constituent gluon model
bound state of $c \bar{c} g$

Flux-tube model

c and \bar{c} connected by excited flux tube

Charmonium hybrids (cont.)

Quantum numbers
same as charmonium
plus exotic quantum numbers: $0^{--}, 0^{+-}, \mathrm{I}^{-+}, 2^{+-}, \ldots$

Decays
Isgur, Kokowski, \& Paton Close \& Page Kuo \& Pene
suppression of decays into $D^{(*)} D^{(*)}$
(S-wave + S-wave)
preference for
$D^{* *} \bar{D}^{(*)}$
(P-wave + S-wave)
robust prediction?

Tetraquarks

Constituent quark model: cc̄q̄̄
Classify according to color structure
compact tetraquark: $(c \bar{c} q \bar{q})_{1}$

diquark-onium: $(c q)_{3^{*}}+(\bar{c} \bar{q})_{3}$

$$
(c q)_{6}+(\bar{c} \bar{q})_{6^{*}}
$$

charm meson molecule: $(c \bar{q})_{1}+(\bar{c} q)_{1}$

hadro-charmonium: $(c \bar{c})_{1}+(q \bar{q})_{1}$

superposition of all the above?

Tetraquarks (cont.)

Compact tetraquarks

Constituent quark model: $c \bar{q} q \bar{q}$ exact numerical solution of the 4-body problem

Vijande, Valcarce, et al.
Hiyama, Suganama, \& Kamimura
no stable cc̄q̄̄ states
with only color-dependent 2-body forces
there are always lower energy two-meson states:

$$
(c \bar{c})_{1}+(q \bar{q})_{1} \text { or }(c \bar{q})_{1}+(\bar{c} q)_{1}
$$

metastable states above two-meson threshold?
strong correlations not describable by 2-body force?

Tetraquarks (cont.)

Diquark-onium

Maiani, Piccinini, Polosa, \& Ricquer
Ishida, Ishida, \& Maeda
Ebert, Faustov, \& Galkin
constituent diquarks: $S=(c q)_{3^{*}, S=0}$

$$
A=(c q)_{3^{*}, S=1}
$$

$$
S \bar{S}: \quad 0^{++}
$$

S-wave tetraquarks: $A \bar{S}, S \bar{A}: 1^{++}, 1^{+-}$

$$
A \bar{A}: \quad 0^{++}, 1^{+-}, 2^{++}
$$

flavor multiplets for each $J^{P C}$:

$$
\begin{array}{ll}
q=(u, d): & \left(X^{-}, X^{0}, X^{+}\right), X^{0^{\prime}} \\
q=(u, d, s): & 9 \text { states }
\end{array}
$$

Tetraquarks (cont.)
Diquark-onium
(cq) 3* diquarks
S-wave $\quad 6 \times 9=54$ states
$q=(u, d, s)$
plus orbital excitations?
radial excitations?
(cq) ${ }_{6}$ diquarks?
proliferation of predicted states!
unknown dynamics \Rightarrow few constraints

Tetraquarks (cont.)

Charm meson molecules

A. Meson potential models

- one-pion exchange Tornqvist I99I,I993

Liu, Liu, Deng, \& Zhu 2008
Thomas \& Close 2008

- add quark exchange Swanson 2003
- add heavier mesons: $\eta, \sigma, \rho, \omega$

Ding, Liu, \& Yan 2009

Tetraquarks (cont.)

Charm meson molecules

B. Meson scattering models solve Lippman-Schwinger integral equations for scattering amplitudes

- charm mesons with contact interactions
- charm mesons with pion exchange
- more elaborate models (Oset, ...)

Tetraquarks (cont.)

Hadro-charmonium
 Liu, Zeng, \& Li 2005 Yuan, Wang, \& Mo 2006 Guo, Hanhart, \& Meissner 2008 Dubinskiy \& Voloshin 2008

light hadron bound to a charmonium

$$
\begin{aligned}
& Y(4260)=X_{c 1} \omega ? \\
& Y(4660)=\Psi(2 S) f_{0} ? \\
& Z^{+}(4430)=\Psi(2 S) \rho^{+} ?
\end{aligned}
$$

Lattice QCD

pioneering calculations for charmonium, bottomonium using nonrelativistic QCD
NRQCD collaboration (Davies, Lepage, Shigemitsu,...) including dynamical light quarks
HPQCD collaboration (Davies, Lepage, Shigemitsu,...)
quantitative calculations require

- extrapolation to zero lattice spacing ($a \rightarrow 0$)
- extrapolation to infinite volume $(\mathrm{V} \rightarrow \infty)$
- dynamical light quarks
(for correct running of α_{s})
- extrapolation to physical pion mass

Lattice QCD (cont.)

Born-Oppenheimer approximation

c and \bar{c} move slowly in potential $V(r)$
$V(r)=$ energy of gluon field
for static color sources separated by r
calculate $V(r)$ using lattice QCD
c and \bar{c} with gluon field ...
... in ground state: charmonium

... in excited state: charmonium hybrid

Lattice QCD (cont.)
lowest B-O potential: charmonium potential model!
next lowest B-O potential: charmonium hybrids
9 degenerate angular momentum multiplets:

higher B-O potentials not well-separated
with dynamical light quarks, avoided crossings with meson-meson B-O potentials

Bali, Ehmann

Lattice QCD (cont.)

direct calculation of cc meson spectrum

charmonium hybrids (without dynamical light quarks)

exotic!

Liao \& Manke 2002

Liu \& Liu 2005

$4900 \pm 90 \mathrm{MeV}$
$4700 \pm 170 \quad 4710 \pm 150 \mathrm{MeV}$
$4430 \pm 40 \quad 4410 \pm 40$
4400 ± 150
4370 ± 150
direct calculation of excited $c \bar{c}$ meson spectrum charmonium and charmonium hybrids
one excited state (with dynamical light quarks)
Ehmann, Bali
several excited states (without dynamical light quarks)
Dudek, Edwards, Mathur, Richards and radiative transition rates

Dudek, Edwards, Thomas
Lattice QCD is approaching the power required to solve the $c \bar{c}$ meson puzzles!

$\underline{X(3872)}$

discovered by Belle Collaboration in August 2003

$$
B^{+} \rightarrow K^{+}+X \quad X \rightarrow J / \Psi \pi^{+} \pi^{-}
$$

confirmed by CDF Collaboration in November 2003

$$
p \bar{p} \rightarrow X+\text { anything } \quad X \rightarrow J / \Psi \pi^{+} \pi^{-}
$$

other observed decay modes:

$$
\begin{array}{lll}
J / \Psi \pi^{+} \pi^{-} \pi^{0} & J / \Psi \gamma & D^{0} \bar{D}^{0} \pi \\
& \Psi(2 S) \gamma(?) & D^{0} \bar{D}^{0} \gamma
\end{array}
$$

X(3872) (cont.)
Ist of two crucial experimental inputs:
I. Quantum numbers: $J^{\mathrm{PC}}=I^{++}$
a) decay into $J / \Psi \gamma$

$$
\Rightarrow \quad C=+
$$

Belle, Babar
b) momentum distributions for $J / \Psi \pi^{+} \pi^{-}$

$$
\Rightarrow J^{p}=1^{+} \text {or } 2^{-} \quad \text { Belle, CDF }
$$

c) decay into $D^{0} \bar{D}^{0} \pi^{0}$
$\Rightarrow J^{p}=2^{-}$disfavored Belle, Babar
$\Rightarrow X(3872)$ has $\underline{S \text {-wave coupling to } D^{*} \bar{D}^{0}}$

X(3872) (cont.)

2nd of two crucial experimental inputs:
2. Mass: $M_{X}=3871.52 \pm 0.20 \mathrm{MeV}$ measured in $J / \Psi \pi^{+} \pi^{-}$channel CDF, Belle, Babar, D0

Mass relative to $D^{*} 0 \bar{D}^{0}$ threshold:

$$
-E_{X}=-0.42 \pm 0.39 \mathrm{MeV}
$$

$\Rightarrow X(3872)$ has resonant coupling to $D^{*} 0 \bar{D}^{0}$

X(3872) (cont.)
Two crucial experimental inputs:
I. Quantum numbers: $J^{P C}=I^{++}$
$\Rightarrow X(3872)$ has S-wave coupling to $D^{*} D^{0}$
2. Binding energy: $E_{X}=0.42 \pm 0.39 \mathrm{MeV}$
$\Rightarrow X(3872)$ has resonant coupling to $D^{*} 0^{0}$
Quantum mechanics:
S-wave threshold resonances have universal properties determined by large scattering length

Conclusion: $X(3872)$ is charm meson molecule

$$
X=\frac{1}{\sqrt{2}}\left(D^{* 0} \bar{D}^{0}+D^{0} \bar{D}^{* 0}\right)
$$

with universal properties

X(3872) (cont.)
Universal properties
of an S-wave threshold resonance:
binding energy E_{X} and $r m s$ separation $r x$

$$
E_{X}=\hbar^{2} /\left(4 \mu r_{X}^{2}\right)
$$

Apply to X(3872):

$$
\begin{aligned}
E_{X}= & 0.42+/-0.39 \mathrm{MeV} \\
& \Rightarrow r_{X}=4.9^{+13.4}-1.4 \mathrm{fm}
\end{aligned}
$$

X(3872) (cont.)
Universal line shapes in $J / \Psi \pi^{+} \pi^{-}$and $\overline{D^{0}} D^{0} \pi^{0}$

Measurements in $D^{0} \bar{D}^{0} T^{0}$ channel are NOT measurements of mass and width of $X(3872)$!

X(3872) (cont.)
Changes in PDG listing for $X(3872)$ in 2010
PDG averages 2008, 2009
Mass: $\quad 3872.3 \pm 0.8 \mathrm{MeV}$
Width: $3.4^{+2.1}{ }_{-1.7} \mathrm{MeV}$
combine inconsistent measurements from $J / \psi \pi^{+} \pi^{-}$and $D^{0} D^{0} \pi^{0}$ channels

PDG averages 2010
Mass: $\quad 387 \mathrm{I} .56 \pm 0.22 \mathrm{MeV}$
Width: < 2.3 MeV at 90% C.L.
from measurements in $J / \psi \pi^{+} \pi^{-}$channel only

X(3872) (cont.)
How does $X(3872)$ connect to other puzzle pieces?
It depends on mechanism for X (3872)

- $X_{c I}(\underline{2 P})$ with mass is accidentally near $D^{*} D^{0}$ threshold?
- $D^{*} D^{0}$ potential near critical depth for bound state?
either way, resonant interactions with $D^{*} D^{0}$ transform it into a loosely-bound charm meson molecule

Conclusions

One piece of the puzzle can be identified!
$X(3872)$ is a charm meson molecule with large separation between charm mesons

But it has not been connected to any other pieces!
Does $X(3872)$ exist because

- the $X_{c ı}(2 P)$ is near the $D^{*} 0 \bar{D}^{0}$ threshold?
- the $D^{*} D^{0}$ interaction is near the critical strength for bound state?

Conclusions (cont.)

$Z(3930)$ has been identified as $X_{c 2}(2 P)$
None of the other pieces of the puzzle has been identified!

Are they ordinary charmonium?
charmonium hybrids?
charm meson molecules?
experimental artifacts?
something else?

Conclusions (cont.)

To solve the puzzle, what is needed from theory is
definitive lattice QCD calculations of cc meson spectrum and properties

- without dynamical quarks extrapolate to $\mathrm{a} \rightarrow 0, \mathrm{~V} \rightarrow \infty$
- with dynamical quarks extrapolate to $\mathrm{a} \rightarrow 0, \mathrm{~V} \rightarrow \infty, \mathrm{~m}_{\pi} \rightarrow$ physical mass
systematic theoretical treatment of nearby charm meson thresholds

Conclusions (cont.)

To solve the puzzle, what is needed from experiment is

- more pieces of the puzzle
- $J^{\text {PC }}$ for existing pieces
from experiments at
LHC-B
super-B factory
PANDA
Fermilab E-986?
antiproton annihilation experiment needs collaborators: contact Dan Kaplan (IIT) needs jazzier name: FANTASTIC?
(Fermilab ANTiproton Annihilation Spectrometer To Investigate Charmonium)

Tuesday, June 1, 2010

